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The concept of a quasi-geostrophic singular vortex is extended to several types of
two-layer model: a rigid-lid two-layer, a free-surface two-layer and a 21

2
-layer model

with two active and one passive layer. Generally, a singular vortex differs from a
conventional point vortex in that the intrinsic vorticity of a singular vortex, in addition
to delta-function, contains an exponentially decaying term. The theory developed
herein occupies an intermediate position between discrete and fully continuous
multilayer models, since the regular flow and its interaction with the singular vortices
are also taken into account. A system of equations describing the joint evolution of the
vortices and the regular field is presented, and integrals expressing the conservation
of enstrophy, energy, momentum and mass are derived. Using these integrals, the
initial phases of evolution of an individual singular vortex confined to one layer
and of a coaxial pair of vortices positioned in different layers of a two-layer fluid
on a beta-plane are described. A valuable application of the conservation integrals
is related to the stability analysis of point-vortex pairs within the 11

2
-layer model,

2 1
2
-layer model, and free-surface two-layer model on the f-plane. Such vortex pairs

are shown to be nonlinearly stable with respect to any small perturbation provided
its regular-flow energy and enstrophy are finite.

1. Introduction
Intense localized synoptic (mesoscale) eddies in the atmosphere and oceans are

remarkably durable and significantly contribute to the transport of kinetic energy,
heat, momentum and material (both chemical and biological). As a rule, localized
vortices are strongly nonlinear, their dynamics being affected by a number of physical
factors, such as the β-effect (the planetary vorticity gradient), background large-scale
flows, density stratification and topography. Generally, complete incorporation of
all these effects into one model is problematic. Therefore, simplified models that
correctly reproduce the underlying physics are employed. One such approach is based
on approximation of distributed eddies by systems of singular vortices.

The form of singular vortices is not universal and can be chosen based on physical
considerations. On the f-plane, where the β-effect is absent (constant rotation), a
natural choice is to use conventional point vortices for singular vortices. Within the
limits of this approach, the potential vorticity (PV) of a point vortex is concentrated
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in a point and is proportional to Dirac’s delta-function. Any f-plane vortical flow
can be approximated by a sufficiently large set of point vortices, whose dynamics
are described by a system of ordinary differential equations. In a free-surface f-
plane model, the combined effect of rotation and stratification manifests itself in that
the peripheral velocity field of a discrete vortex decays exponentially (see Obukhov
1949; Morikawa 1960), rather than algebraically, as in classical two-dimensional fluid
dynamics. Systems of point vortices in a constantly rotating stratified fluid have been
considered in various physical contexts (Gryanik 1983; Gryanik & Tevs 1989, 1991,
1997; Hogg & Stommel 1985a, b; Pedlosky 1985; Young 1985; Griffiths & Hopfinger
1986; Legg & Marshall 1993; Sokolovskiy & Verron 2000, 2002, 2004; Kizner 2006;
reviewed by Gryanik, Sokolovskiy & Verron 2006).

Consideration of the β-effect complicates assessment of the dynamics of singular
vortices, because a non-zonal displacement of a fluid parcel is always associated with
a change in its intrinsic vorticity, which is defined here as the quasi-geostrophic PV
minus planetary vorticity. A concept of barotropic modulated β-plane point vortices
was suggested by Zabusky & McWilliams (1982). As with f-plane point vortices, where
PV and intrinsic vorticity coincide, the motion of an ensemble of modulated β-plane
point vortices is described by ordinary differential equations; however, the circulation
(or strength) of any vortex is assumed to change upon non-zonal displacement of
the vortex. Using this approach, qualitative analysis of the dynamics of barotropic
vortices was achieved (Zabusky & McWilliams 1982; Kono & Horton 1991; Hobson
1991; Velasco Fuentes & van Heijst 1994, 1995). A two-layer version of the β-
modulation was used by Kizner (2006) to examine the involvement of the β-effect in
transitions of baroclinic modon-like vortical configurations. However, β-modulation
model cannot be formally derived from the equations of PV conservation, but rather is
an approximate approach intended to imitate the β-effect in vortical systems (Reznik
1992).

As distinct from conventional point vortices, a rigorous approach to the β-plane
dynamics involves a more general class of singular vortices. As with a free-surface
f-plane point vortex, the velocity field in a singular vortex decays exponentially
at infinity. However, the intrinsic vorticity of a singular vortex, unlike that of
conventional point vortices, contains an exponentially decaying component, in
addition to the delta-function component. On the β-plane, vortices can form ensembles
that travel steadily in the zonal direction without generating any regular velocity field
besides the singular velocity field induced by the vortices themselves (Reznik 1986,
1992; Gryanik 1986, 1988; Flierl 1987; Gryanik, Borth & Olbers 2004). This scenario
is possible if the amplitudes and coordinates of the vortices are appropriately fitted.

The situation differs significantly when an additional regular flow is present. On the
f-plane, the regular flow will exist only if it is present in the initial state. In contrast,
on the β-plane, a regular-flow component will develop because of a non-stationary
motion of a singular-vortex ensemble, even if the initial state is free of a regular
flow. For instance, an individual singular vortex on the β-plane cannot be stationary.
Consequently, the motion of such a vortex will induce development of a regular flow.
Obviously, the regular component of a mixed singular–regular flow interacts with the
singular vortices, resulting in both the regular and singular fields undergoing changes.
Evolution of a combined singular–regular system is described by a set of interrelated
equations that govern the regular flow component and the drift of singular vortices. In
the barotropic case, such a theory was developed and used to examine the evolution
of an intense singular vortex on the β-plane (Reznik 1992).
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In this paper, the theory of singular vortices is extended to two-layer fluids. Such
a task implies the derivation of basic differential equations and integral invariants of
the two-layer mixed singular–regular dynamics. These invariants are used to tackle
the problem of stability of vortical pairs. In the absence of regular flow, any pair of
point vortices on the f-plane, whether barotropic or baroclinic, is stable in the sense
that a perturbation of their initial coordinates will not grow with time. However, the
question as to how regular-flow perturbations might affect a singular-vortex pair has
not been considered until now. We offer an answer to this question by showing that
a singular-vortex pair is nonlinearly stable with respect to any small perturbation
whose regular-flow energy and enstrophy are finite.

Equations that govern the cooperative evolution of singular vortices and a regular
background flow are presented in § 2. Invariants of motion of such a system and some
straightforward consequences drawn from these conservation laws are considered in
§ 3. Stability of f-plane vortex pairs is examined in § 4. The main results of the paper
are summarized in § 5.

2. Basic equations
2.1. Conservation of potential vorticity in layered models

We consider a hierarchy of models, from the 11
2
-layer to the 21

2
-layer model, based

on the following pair of conventional equations of conservation of quasi-geostrophic
potential vorticity:

∂Πi

∂t
+ J (ψi, Πi) = 0, Π = qi + βy, i = 1, 2, (2.1a)

Subscripts 1 and 2 are indices of the first (upper) and second (lower) layers; ψi , Πi ,
and qi are the streamfunction, PV, and intrinsic vorticity in layer i, respectively; J(,) is
the Jacobian operator. The intrinsic vorticities are given by the following equations:

q1 = ∇2ψ1 + Λ1(s1ψ2 − ψ1), q2 = ∇2ψ2 + Λ2(s2ψ1 − ψ2). (2.1b, c)

The constants Λ1, Λ2, s1 and s2 are defined below using the following conventional
notations: f0 is the reference value of the Coriolis parameter and β its northward
gradient; g′ is the reduced gravity; and Hi and ρi are the depth and fluid density of
layer i.

The term ‘n 1
2
-layer model’ is commonly used to refer to an (n + 1)-layer fluid,

where the upper n layers are assumed to be active and the lower layer, n + 1, to be
motionless. Such a situation arises when the motion in the lower layer can be ignored
owing to the great (infinite) thickness of this layer. In the 21

2
-layer model (two active

and one passive layer):

Λ1 =
f 2

0

g′
1H1

, Λ2 =
f 2

0

g′
2H2

ρ3 − ρ1

ρ2 − ρ1

, s1 =
ρ2

ρ1

, s2 =
ρ1(ρ3 − ρ2)

ρ2(ρ3 − ρ1)
, (2.2)

where

g′
1 = g

ρ2 − ρ1

ρ1

, g′
2 = g

ρ3 − ρ2

ρ2

, ρ3 > ρ2 > ρ1. (2.3)

In the case of a two-layer fluid with a free upper surface

Λ1 =
f 2

0

g′H1

, Λ2 =
f 2

0

g′H2

, s1 = 1, s2 =
ρ1

ρ2

, g′ = g
ρ2 − ρ1

ρ2

. (2.4)
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When a two-layer flow under the rigid-lid condition is considered

Λ1 =
f 2

0

g′H1

, Λ2 =
f 2

0

g′H2

, s1 = s2 = 1, g′ = g
ρ2 − ρ1

ρ2

. (2.5)

In a 11
2
-layer model (one active layer and one infinitely deep passive layer or one layer

with a free upper surface), equations (2.1) describe the motion in only one layer 1, so
the definitions become:

Λ1 =
f 2

0

g′H1

, Λ2 = 0, ψ2 ≡ 0, s1 = 1. (2.6)

2.2. Point vortices

The invariants of motion and the stability analysis of vortex pairs presented in §§ 3
and 4 depend strongly on the form of singular vortices assumed. In principle, there
are different ways, all based upon physical considerations, of determining the form
of a singular vortex. If the β-effect is absent, i.e. β = 0 in (2.1), the best choice is
conventional point vortices confined to either the upper or lower layer. An upper-layer
point vortex of unit circulation is determined by

qu
1,s = ∇2ψu

1,s + Λ1

(
s1ψ

u
2,s − ψu

1,s

)
= δ(x)δ(y),

qu
2,s = ∇2ψu

2,s + Λ2

(
s2ψ

u
1,s − ψu

2,s

)
= 0.

}
(2.7a)

Here in after, δ(z) is Dirac’s delta-function, variables marked by subscript s are
associated with singular vortices, superscript u indicates that the corresponding fields
are induced by the singular vortex located in the upper layer. Note that a singular
vortex confined to the upper layer induces flows in both layers. The equations
determining a lower-layer unit point vortex are:

ql
1,s = ∇2ψl

1,s + Λ1

(
s1ψ

l
2,s − ψl

1,s

)
= 0,

ql
2,s = ∇2ψl

2,s + Λ2

(
s2ψ

l
1,s − ψl

2,s

)
= δ(x)δ(y),

}
(2.7b)

where the superscript l indicates the lower location of the singular vortex.
In the quest for the streamfunctions ψu

i,s and ψl
i,s (where i = 1, 2), we introduce the

normal-mode variables

ψ± = ψ1 + α±ψ2, q± = q1 + α±q2, (2.8)

where, for simplicity, subscript s and superscripts u and l are omitted, and the
coefficients α± are defined as

α(±) =
1

2Λ2s2

[(Λ1 − Λ2) ±
√

(Λ1 − Λ2)
2 + 4Λ1Λ2s1s2]. (2.9)

When (2.8) and (2.9) are substituted into (2.1b, c), the normal-mode variables (2.8)
decouple. Solving equations for the normal-mode variables and reverting to the layer
streamfunctions yields:

ψu
1,s = ψu

1,s(r) =
1

2π(α+ − α−)
(α−K0(p−r) − α+K0(p+r)), (2.10a)

ψu
2,s = ψu

2,s(r) =
1

2π(α+ − α−)
(K0(p+r) − K0(p−r)) , (2.10b)
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ψl
1,s = ψl

1,s(r) =
α−α+

2π(α+ − α−)
(K0(p−r) − K0(p+r)), (2.11a)

ψl
2,s = ψl

2,s(r) =
1

2π(α+ − α−)
(α−K0(p+r) − α+K0(p−r)). (2.11b)

From here on r =
√

x2 + y2 is the polar radius, and Km(z) and Im(z) are the modified
m-order Bessel functions of the argument z. At this stage, when conventional point
vortices are considered, parameter p± in (2.10) and (2.11) is defined as

p2
± = d±, (2.12a)

where

d± = 1
2
[(Λ1 + Λ2) ±

√
(Λ1 − Λ2)2 + 4Λ1Λ2s1s2]. (2.12b)

However, when dealing with singular vortices on the β-plane and using (2.10) and
(2.11), below, p± will be defined differently.

In a two-layer model with a free surface and in a 21
2
-layer model,

s1s2 < 1, (2.13)

(see (2.2), (2.4)). Therefore, in these cases

d± > 0, p2
± > 0. (2.14)

In a two-layer model under the rigid-lid condition, d− = p2
− = 0. Accordingly,

the function K0(p−r) in (2.10), (2.11) should be replaced with − ln r . Note that the
streamfunction ψu

1,s (or ψl
2,s) has a logarithmic singularity at r = 0, whereas the

streamfunction ψu
2,s (or ψl

1,s) is regular throughout the (x, y)-plane and represents
the motion induced in the lower (upper) layer by the singular vortex confined to the
upper (lower) layer.

In the absence of a background regular flow, the evolution of a system of point
vortices of the type (2.7) is governed by ordinary differential equations. Generally,
if β �= 0, the flow induced by the singular vortices leads to redistribution of the
background PV owing to non-zonal displacements of elements of ambient fluid. This
redistribution causes generation of a regular velocity field, which is in addition to
the velocity field due to the vortices. In such cases, the evolution of an ensemble of
singular vortices cannot be reduced to a system of ordinary differential equations,
since the regular flow affects the motion of the singular vortices. Thus, the system of
coupled differential equations, which describes the combined evolution of the regular
flow and singular vortices, should be considered.

2.3. Two-layer modons and singular vortices

In order to properly define the form of a singular vortex (for β �= 0), first we
consider localized steadily translating vortical solutions to the system of equations
(2.1), referring to such solutions as modons. Because of the steady translation, the
streamfunctions ψ1 and ψ2 of a modon can be considered as depending only on the
arguments x − Ut and y:

ψi = ψi(x − Ut, y), i = 1, 2, (2.15)
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where U is the constant translation speed of the modon (the translation can only be
zonal). Therefore, in the co-moving frame of reference, (2.1a) can be rewritten as:

J

(
ψi + Uy, qi − β

U
ψi

)
= 0, i = 1, 2. (2.16)

In each layer, a bounded interior domain Di and an infinite exterior domain exist,
filled with closed and open streamlines (contours of the co-moving streamfunction
ψi +Uy), respectively (see Flierl et al. 1980). In the exterior domain, (2.16) reduces to

qi − β

U
ψi = 0, i = 1, 2. (2.17a)

In the interior domain, Di , (2.16) is equivalent to

qi − β

U
ψi = Zi(ψi + Uy), i = 1, 2, (2.17b)

where Zi is a differentiable function. Any solution to (2.17) that decays sufficiently
fast at infinity can be presented implicitly as:

ψ1 =

∫
D1

Z1[ψ1(r ′) + Uy ′]ψu
1,s(|r − r ′|) dr ′+

∫
D2

Z2[ψ2(r ′) + Uy ′]ψl
1,s(|r − r ′|) dr ′,

(2.18a)

ψ2 =

∫
D1

Z1[ψ1(r ′) + Uy ′]ψu
2,s(|r − r ′|) dr ′+

∫
D2

Z2[ψ2(r ′) + Uy ′]ψl
2,s(|r − r ′|) dr ′.

(2.18b)

The functions ψu
1,s , ψ

u
2,s , ψl

1,s and ψl
2,s in (2.18) are given by (2.10) and (2.11) with

p2
± = β/U + d±, where d± is determined by (2.12b). The equations these functions

obey are:

qu
1,s − p2ψu

1,s = δ(x)δ(y), qu
2,s − p2ψu

2,s = 0, (2.19a)

ql
1,s − p2ψl

1,s = 0, ql
2,s − p2ψl

2,s = δ(x)δ(y), (2.19b)

where p2 = β/U . Generally, parameter p2 can be of any sign. However, for functions
ψu

1,s , ψ
u
2,s , ψl

1,s and ψl
2,s and, therefore, for the solution to (2.17) given by (2.18) to

decay exponentially with r → ∞, parameter p2 must satisfy the condition

p2
± = p2 + d± � 0. (2.19c)

The derivations above were carried out to demonstrate that any two-layer modon
can be interpreted as a superposition of a continuum of singular vortices that each
have the form (2.19) (within an amplitude factor) and fill the finite interior domains
Di . Unlike the vortices determined by (2.7), those given by (2.19) are not conventional
point vortices. This is because the corresponding intrinsic vorticities in the layers,
besides Dirac’s delta-functions, contain additional terms that decay exponentially at
r → ∞ and have a logarithmic singularity at the origin.

In what follows, as the elements that constitute the singular part of a mixed
singular–regular solution to (2.1), we use the singular vortices (2.19) of which any
modon consists. Several vortices with specially fitted amplitudes and positions can
form a discrete modon (see Reznik 1992; Gryanik 1988) or other steadily translated
structures (Gryanik et al. 2004). However, if the amplitudes and coordinates of vortices
are arbitrary, such an ensemble is not necessarily stationary, and p2 in (2.19) is not



Two-layer quasi-geostrophic singular vortices in a regular flow. Part 1 191

related to the parameter β or to any prescribed translation speed U. In other words,
p2 can also be set arbitrarily, with the only restriction imposed on p2 being condition
(2.19c), which assures exponential decay of the streamfunctions of the vortex at
infinity.

2.4. Non-stationary systems of singular vortices

Let that streamfunction ψi in each layer be a superposition of the streamfunctions
ψi,r and ψi,s of the regular and singular flows, respectively:

ψi = ψi,r + ψi,s, i = 1, 2. (20)

We assume the singular part of the flow to consist of N1 upper-layer and N2 lower-
layer singular vortices of the type (2.19):

ψ1,s =

N1∑
n1

A1,n1
ψu

1,s(|r − rn1
|)+

N2∑
n2

A2,n2
ψl

1,s(|r − rn2
|), (2.21a)

ψ2,s =

N1∑
n1

A1,n1
ψu

2,s(|r − rn1
|)+

N2∑
n2

A2,n2
ψl

2,s(|r − rn2
|), (2.21b)

where Ai,ni
is the amplitude of vortex ni in layer i, and r = rni

(t) is its trajectory,
the summation being over n1 = 1, . . . , N1 and n2 = 1, . . . , N2. The amplitudes of the
two-layer singular vortices in (2.21) are constants of motion, as in the case with
barotropic vortices (Reznik 1992).

The single-layer derivations of Reznik (1992) can now be re-examined in the
framework of a layered model. By substituting (2.20) and (2.21) into (2.1a), and
setting to zero separately the regular and singular parts, we obtain:

∂

∂t
(qi,r + p2ψi,s + βy) + J (ψi,r + ψi,s, qi,r + p2ψi,s + βy) = 0, (2.22a)

ẋmi
= −

∂
(
ψi,r + ψ

mi

i,s

)
∂y

∣∣∣∣∣
r=rmi

, ẏmi
=

∂
(
ψi,r + ψ

mi

i,s

)
∂x

∣∣∣∣∣
r=rmi

, i = 1, 2. (2.22b, c)

The parameter p2 is a prescribed positive constant; the regular-component intrinsic
vorticity is

q1,r = ∇2ψ1,r + Λ1(s1ψ2,r − ψ1,r ), q2,r = ∇2ψ2,r + Λ2(s2ψ1,r − ψ2,r ); (2.23a, b)

whereas

ψ
m1

1,s =

N1∑
n1 �=m1

A1,n1
ψu

1,s(|r − rn1
|) +

N2∑
n2

A2,n2
ψl

1,s(|r − rn2
|), (2.24a)

ψ
m2

2,s =

N1∑
n1

A1,n1
ψu

2,s(|r − rn1
|) +

N2∑
n2 �=m2

A2,n2
ψl

2,s(|r − rn2
|), (2.24b)

are the upper- and lower-layer singular streamfunctions with vortices m1 and m2

excluded from summation.
Equation (2.22a) contains singular factors at regular functions, and we assume

that for all ni , the function ψi,r is infinitely differentiable at r �= rni
and doubly
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differentiable at r = rni
. The regular vorticity qi,r is continuous throughout the

(x, y)-plane, but generally ∂qi,r/∂t and ∇qi,r have singularities at r = rni
, and the

singularities in (2.22a) must mutually cancel out. The physical meaning of each of
equations (2.22a–2.22c) is the same as in the one-layer case. Equations (2.22b) and
(2.22c) imply that the motion of a singular vortex is induced by other singular
vortices, and by the regular-flow component as well. The most complex equation,
(2.22a), describes the evolution of the regular-flow streamfunction ψi,r , and thus the
quantity qi,r +p2ψi,s +βy (which can be referred to as the regular PV) is conserved in
each fluid element distinct from the singular vortices. This conservation implies that
the regular intrinsic vorticity qi,r in the element depends not only on the meridional
position y of the element, but also on the disposition of the singular vortices.

When β = 0 and p = 0, the singular vortices are the conventional point vortices,
in which case, the regular PV coincides with the regular intrinsic vorticity qi,r . If the
regular field ψi,r is zero, (2.22a) is satisfied, and (2.22b) and (2.22c) reduce to the
familiar system of ordinary differential equations that describes the motion of an
ensemble of interacting point vortices (Gryanik 1983). However, if ψi,r �= 0 at some
moment, then ψi,r will remain non-zero since, at p = 0, regular PV is conserved in
any fluid element distinct from the point vortices themselves. When β = 0 and p �= 0,
as occurs in truly singular f-plane vortices (2.19), the regular PV, qi,r + p2ψi,s , of a
fluid element depends on the position of the element relative to the singular vortices.
An ensemble of such singular vortices (N1 + N2 > 1 in (2.21)) generates a regular
component, ψi,r .

3. Invariants of motion
3.1. Enstrophy integral

The derivation of the enstrophy integral of the motion of a mixed singular–regular
vortical system is similar to that carried out by Reznik (1992). In the absence of the
singular component, this invariant converts into the conventional enstrophy integral,
and thus the term ‘enstrophy integral’ is used. First, the two sides of (2.22a) are
multiplied by q1,r − p2ψ1,r at i = 1, and by (Λ1s1/Λ2s2)(q2,r − p2ψ2,r ) at i = 2,
integrated over the (x, y)-plane, and the results summed up. Next, the resulting
equation is transformed with the use of equations (2.22b, c), (2.12), (2.19) and the
formula ∫

R

(∇2F − p2F )K0(pr) dx dy = −2πF (0, 0), (3.1)

which is valid for any regular function F (x, y). After some algebra, the following
conservation law is obtained:

Sr + p2KS − β

(∑
m1

A1,m1
ym1

+
Λ1s1

Λ2s2

∑
m2

A2,m2
ym2

)
= const. (3.2)

In (3.2), the functional KS is:

KS = − 1
2

{ ∑
m1 �=n1

A1,m1
A1,n1

ψu
1,s

(
rm1,n1

)
+

Λ1s1

Λ2s2

∑
m2 �=n2

A2,m2
A2,n2

ψl
2,s

(
rm2,n2

)

+ 2
Λ1s1

Λ2s2

∑
m1,m2

A1,m1
A2,m2

ψu
2,s

(
rm1,m2

)}
, (3.3)
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where rmi,ni
= |rmi

− rni
| is the distance between vortices mi and ni . Using (2.10)

and (2.11), when β = p = 0, (3.3) reduces to the Kirchoff function for a two-layer
ensemble of conventional f-plane point vortices.

Because of inequality (2.13), the functional Sr ,

Sr = 1
2

∫ {[
q2

1,r + p2(∇ψ1,r )
2
]
+

Λ1s1

Λ2s2

[
q2

2,r + p2(∇ψ2,r )
2
]

+ p2Λ1

(
ψ2

1,r +
s1

s2

ψ2
2,r − 2s1ψ1,rψ2,r

)}
dx dy, (3.4)

is positive-definite. In the special case of β = p = 0, it reduces to the enstrophy due to
the regular component. According to (3.2) and (3.3), Sr changes because of changes
in the mutual distances between the singular vortices, and because of non-zonal
displacements of the vortices (the second and the third terms on the left-hand side of
(3.2), respectively).

3.2. Energy integral

Another invariant of motion of a mixed singular–regular vortical system, which was
not previously considered, can be termed the energy integral, because it converts
into a conventional energy integral in the absence of the singular component. This
invariant is derived by multiplying the two sides of (2.22a) by ψ1,r + ψ1,s at i = 1
and by (Λ1s1/Λ2s2)(ψ2,r + ψ2,s) at i = 2, integrating them over the (x, y)-plane, and
summing up the results. Using (3.1) and (2.22b, c), the following conservation law is
obtained:

Er − p2Es,r + KS −
∑
m1

A1,m1
ψ1,r |r=rm1

− Λ1s1

Λ2s2

∑
m2

A2,m2
ψ2,r |r=rm2

= const, (3.5)

where the functional KS is given by (3.3), and

Er = 1
2

∫ [
(∇ψ1,r )

2 +
Λ1s1

Λ2s2

(∇ψ2,r )
2 + Λ1

(
ψ2

1,r +
s1

s2

ψ2
2,r − 2s1ψ1,rψ2,r

)]
dx dy, (3.6)

Esr =

∫ (
ψ1,sψ1,r +

Λ1s1

Λ2s2

ψ2,sψ2,r

)
dx dy + 1

2

∫ (
ψ2

1,s +
Λ1s1

Λ2s2

ψ2
2,s

)
dx dy. (3.7)

The positive-definite functional Er coincides with the energy of the regular component.
In this system, the last two terms on the left-hand side of (3.5) and the first term on
the right-hand side of (3.7) represent the energy of interaction between the singular
and the regular components. The function KS and the second term on the right-hand
side of (3.7) represent the self-interaction energy of the singular mode. If p = 0, i.e.
if the singular vortices are conventional point vortices, integral (3.5) reduces to the
sum of energy of the regular component, Er , the energy of interaction of the point
vortices, KS , and the energy of interaction between the point vortices and the regular
component (the last two terms in (3.5)).

Multiplication of the two sides of (2.22a) by q1,r + p2ψ1,s at i = 1 and by
(Λ1s1/Λ2s2)(q2,r + p2ψ2,s) at i = 2, integration over the (x, y)-plane, and summation
of the results leads to an invariant that can be considered as an alternative form of
the enstrophy conservation:

1
2

∫ [
(q1,r + p2ψ1,s)

2 +
Λ1s1

Λ2s2

(q2,r + p2ψ2,s)
2

]
dx dy

= −β

(∑
m1

A1,m1
ym1

+
Λ1s1

Λ2s2

∑
m2

A2,m2
ym2

)
= const. (3.8)
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In the absence of the singular component, integral (3.8), like (3.2), transforms into a
conventional enstrophy invariant. Note that any two of the three integrals (3.2), (3.5),
and (3.8) are independent, and the third integral is their linear combination.

3.3. Mass and momentum integrals

The set of invariants of the mixed singular–regular system (2.22) is completed by
deriving integrals of mass and momentum conservation. First, the regular-component
equation (2.22a) is integrated over the (x, y)-plane. According to the definition of a
singular vortex ∫

ψi,sdx dy = const, i = 1, 2, (3.9)

(see (2.21)). Therefore, from (2.22a) we obtain:∫
ψi,rdx dy = const, i = 1, 2. (3.10)

These two equalities represent the mass conservation by a mixed singular–regular
system.

For this system, conservation of momentum along the x-axis is obtained by
multiplying the two sides of (2.22a) by x at i = 1 and (Λ1s1/Λ2s2)x at i = 2,
integration over the (x, y)-plane, and summation of the results. Using (2.19) and
(2.22b, c) after some algebra yields:

∂

∂t

∫
x

[
(s1 − 1)(ψ1,r + ψ1,s) +

s1

s2

(s2 − 1)(ψ2,r + ψ2,s)

]
dx dy

=
β

Λ1

∫ [
ψ1,r + ψ1,s +

Λ1s1

Λ2s2

(ψ2,r + ψ2,s)

]
dx dy = const. (3.11)

Constancy of the right-hand side in (3.11) is due to the mass conservation integrals
(3.9) and (3.10). By a similar procedure, the momentum conservation along the y-axis
is obtained:∫

y

[
(s1 − 1)(ψ1,r + ψ1,s) +

s1

s2

(s2 − 1)(ψ2,r + ψ2,s)

]
dx dy = const. (3.12)

From (3.11) it is evident that the x-component of momentum linearly grows with
time, on the β-plane, where as it is constant on the f-plane. The y-component remains
constant on both the β- and f-planes, as seen in (3.12). Note that the momentum
conservation laws (3.11) and (3.12) are non-trivial only in the models, where s1 and
s2 are determined by formulae (2.2) and (2.4).

3.4. Straightforward outcomes of the enstrophy and energy integrals on a β-plane

3.4.1. Single vortex

Consider an individual singular vortex with its singular intrinsic vorticity confined
to the upper layer, i.e. N1 = 1, A1,1 = A, and N2 = 0 in (2.21). The singular
streamfunction then becomes:

ψ1,s = Aψu
1,s(|r − r0|), ψ2,s = Aψu

2,s(|r − r0|), (3.13)

where r = r0(t) is the trajectory of the vortex. Obviously, KS = 0 in this case and,
therefore, differentiation of (3.2) with respect to time yields:

Ṡr − βAẏ0 = 0, (3.14)

with a dot designating the time derivative.
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Assume that, at an initial instant, the regular streamfunction, ψir , is zero. On
the β-plane, an individual singular vortex will not be a stationary state, and thus,
necessarily, will start to generate a regular flow component. Therefore, at the initial
stage of this generation, Ṡr > 0 and, by virtue of (3.14), Aẏ0 > 0. This implies that,
at least at early times, a cyclonic singular vortex (A > 0) will move northward, and
an anticyclonic vortex (A < 0) will move southward. Obviously, the same is valid for
a vortex confined to the lower layer. Thus, qualitatively, the initial evolution of an
individual monopole on the β-plane in two-layer fluid is the same as in the barotropic
case (cf. Reznik 1992).

3.4.2. Vortex pair

Consider an ensemble composed of two singular vortices, one of which being confined
to the upper layer and the other to the lower layer. In this case

ψ1,s = A1ψ
u
1,s(|r − r1|) + A2ψ

l
1,s(|r − r2|), (3.15a)

ψ2,s = A1ψ
u
2,s(|r − r1|) + A2ψ

l
2,s(|r − r2|), (3.15b)

and the function KS becomes

KS = CA1A2[K0(p−r1,2) − K0(p+r1,2)], (3.16)

where r1,2 = |r1 − r2|, and C = Λ1s1/(2π(α+ − α−)Λ2s2) > 0. By also assuming that,
at t = 0, the locations of the two vortices coincide, i.e. r1,2 = 0, and the regular-flow
component is absent, we obtain:

ψ1 = ψ1,s =
α−

2π(α+ − α−)
(A1 + α+A2)K0(p−r) − α+

2π(α+ − α−)
(A1 + α−A2)K0(p+r),

(3.17a)

ψ2 = ψ2,s = − 1

2π(α+ − α−)
(A1+α+A2)K0(p−r) +

1

2π(α+ − α−)
(A1 + α−A2)K0(p+r).

(3.17b)

On the β-plane, the vortex pair under consideration can be shown to be non-
stationary. Therefore, a regular component arises and the vortices start separating,
i.e. Ṡr > 0 and ṙ1,2 > 0 at early times. Differentiation of (3.16) yields:

K̇S = −CA1A2ṙ1,2[p−K1(p−r1,2) − p+K1(p+r1,2)]. (3.18)

According to (2.12) and (2.19c), p− < p+. Therefore, for small values of r1,2, the
following inequality holds:

p−K1(p−r1,2) − p+K1(p+r12) > 0, r1,2 � 1. (3.19)

If the vortices of this pair are of different signs, i.e. if A1A2 < 0, then according to
(3.18), K̇S > 0. Hence, (3.2) in this case implies:

A1

(
ẏ1 − Λ1s1

Λ2s2

∣∣∣∣A2

A1

∣∣∣∣ ẏ2

)
> 0. (3.20)

When amplitudes A1 and A2 satisfy the additional condition of

Λ1s1

Λ2s2

∣∣∣∣A2

A1

∣∣∣∣ = 1, (3.21)



196 G. Reznik and Z. Kizner

it follows from (3.20) that

A1ẏ12 > 0. (3.22)

Thus, under condition (3.21), the cyclonic vortex starts moving northward, and the
anticyclonic vortex southward, while the rise of a separation between the cyclone and
anticyclone induces the tendency of the vortex pair to propagate eastward (at least at
early times).

Condition (3.21) has a clear physical meaning in the rigid-lid model (2.5). In this
case, α− = −1 and α+ = H2/H1, so the two vertical normal modes (2.8) are just
the barotropic and baroclinic modes. In these circumstances, under condition (3.21),
equations (3.17) reduce to

ψ1|t=0 = −H2

H1

A

2π
K0(p+r), ψ2|t=0 =

A

2π
K0(p+r), A = A1 − A2, (3.23)

which imply that the initial state is a purely baroclinic vortex.
In fact, the conclusion that the development of a regular component tilts the

axis of an initially baroclinic vortex pair and induces its eastward drift, generalizes to
singular vortices the result obtained previously with point vortices (Reznik, Grimshaw
& Sriskandarajah 1997). Long-term numerical simulations with distributed fully
baroclinic coaxial vortical pairs set as initial states (Kizner, Berson & Khvoles 2002)
demonstrated that, as time passes, the growth of separation between the upper and
lower vortices ceases, and the vortex pair gradually transforms into an eastward-
travelling baroclinic modon.

4. Stability of a point-vortex pair on the f-plane
4.1. Statement of the problem and result

The enstrophy and energy invariants (3.2), (3.5) allow examination of nonlinear
stability of an arbitrary f-plane point-vortex pair in the models given by (2.2), (2.4) or
(2.6). When the regular component is absent, the dynamics of a vortex pair are simple
(Gryanik 1983). Namely, the pair, which is comprised of vortices with amplitudes
A1 and A2, executes either a uniform circular motion around a fixed point (centre
of mass) if A1 �= −A2, or a uniform-speed motion if A1 = −A2. The separation
between the vortices, r1,2, is a constant of motion. Given the amplitudes A1 and A2,
the translation speed (at A1 = −A2), or the centre location and the angular velocity
(at A1 �= −A2) are determined by the separation r1,2 only.

The stability of an ensemble of discrete vortices can be determined in several ways.
According to the conventional definition, which does not take into account any regular
flow, an ensemble is regarded as stable if, in response to small initial perturbations of
the coordinates of the vortices, changes in distances between each two vortices remain
small. Thus, a stable ensemble is allowed to move as a whole, but a perturbation in
the mutual arrangement of the vortices should not grow. According to this definition,
in the absence of a regular flow, the motion of an f-plane point-vortex pair is stable:
small changes in r1,2 result in small changes of the centre of mass (at A1 �= −A2) and
the speed of the pair only.

In principle, a regular perturbation imposed on the vortex pair can result in
significant changes in the separation between the vortices and in their velocities. This
requires a generalization of the stability definition for mixed discrete–regular systems
by incorporation of a regular component in the initial perturbation. As shown below,
if at the initial moment the perturbation is small, and the enstrophy and energy
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of the regular component of the perturbation are finite, then (i) the perturbation
remains small at all subsequent times, and (ii) it causes only small changes in the
separation between the vortices. This means that any point-vortex pair, either rotating
or translating, is stable in the broader sense, i.e. relative to small perturbations that
contain regular components. Up to now, the stability of point-vortex ensembles seems
to have been investigated only with respect to initial perturbations of the coordinates
of the vortices, without taking into account any regular component.

4.2. Outline of analysis

On the f-plane p = 0, i.e. singular vortices are just conventional point vortices with
the streamfunctions (2.10), (2.11) (see §§ 2.2 and 2.3). For a point-vortex ensemble, the
first two conservation laws (3.2), (3.5) become:

Sr = 1
2

∫ (
q2

1,r +
Λ1s1

Λ2s2

q2
2,r

)
dx dy = Ω = const, (4.1)

Er + KS −
∑
m1

A1,m1
ψ1,r |r=rm1

− Λ1s1

Λ2s2

∑
m2

A2,m2
ψ2,r |r=rm2

= E0 = const. (4.2)

Relationship (4.1) means that the enstrophy of the regular component is conserved.
In the absence of the regular component, according to (4.2) the energy of interaction
between vortices, KS , is conserved.

Consider a point-vortex ensemble perturbed by some regular field, and Ω to be
the enstrophy of the regular component of the perturbed system. Using enstrophy
conservation (4.1) and equations (2.23), which relate the intrinsic regular vorticity
with the regular streamfunctions, we estimate in terms of Ω the absolute value of
the regular streamfunction and the energy of the regular component, Er , in layer i.
These estimates are merely the inequalities |ψi,r | < Ci

√
Ω and Er < ÊrΩ , where Ci

and Êr are constants that depend on the model parameters only (such as geometry
and stratification). If the enstrophy, Ω , is sufficiently small, then Er and the energy of
interaction between the regular and singular components (the last two terms on the
left-hand side of (4.2)) are small compared to the total energy E0. This means that a
sufficiently small regular perturbation can cause only small changes in KS . In the case
of a vortex pair, KS is a continuous function of only one argument, the separation r1,2

between the two vortices. Therefore, small changes in KS are possible only if changes
in r1,2 are small, i.e. only when the vortex pair is stable.

4.3. Auxiliary estimates

In order to estimate the moduli |ψi,r |, the definition of normal modes (2.8) is applied
to the regular components of the streamfunctions and intrinsic vorticities:

ψ1,r =
α+ψ−

r − α−ψ+
r

α+ − α− , ψ2,r =
ψ−

r − ψ+
r

α+ − α− , (4.3a)

q1,r =
α+q−

r − α−q+
r

α+ − α− , q2,r =
q−

r − q+
r

α+ − α− . (4.3b)

By inserting expressions (4.3) into (2.23) and resolving the resulting equations with
respect to ψ±

r , we obtain:

ψ±
r = − 1

2π

∫
q±

r (r ′, t)K0(p∓ |r − r ′|) dx ′ dy ′, (4.4)
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where the coefficient p∓ at |r − r ′| is given by (2.12). Application of the Cauchy–
Schwartz–Bunyakowsky inequality to the right-hand side of (4.4) yields the following
estimate:

|ψ±
r | � C∓

√∫
(q±

r )2 dx dy, C± =
1

2π

√∫
K2

0 (p±r) dx dy. (4.5)

By combining (4.3a, b) and (4.5), the sought-after estimates are obtained:

|ψi,r | � Ci

√
Ω, i = 1, 2, (4.6)

where

C1 =
α+C−

1 − α−C+
1

α+ − α− , C2 =
C−

1 + C+
1

α+ − α− , (4.7a)

C
±
1 = C∓

√
2(1 + |α±|)

(
1 +

Λ1s1

Λ2s2

|α±|
)

. (4.7b)

The constants C1 and C2 given by (4.7a) are positive since, by virtue of (2.9), α− < 0
and α+ > 0.

In estimation of energy of the regular flow, the following four inequalities derived
from (4.1) and (2.23) are useful:∫

q2
1,r dx dy � 2Ω,

∫
q2

2,r dx dy � 2Ω
Λ2s2

Λ1s1

, (4.8a)

∫
ψ2

1,r dx dy �
Λ1s1s2 + Λ2

Λ1Λ2(1 − s1s2)2
2Ω

Λ1

,

∫
ψ2

2,r dx dy �
s2

s1

Λ1 + Λ2s1s2

Λ1Λ2(1 − s1s2)2
2Ω

Λ1

.

(4.8b)

The energy of the regular component, Er can be represented as

Er = − 1
2

∫ (
ψ1,rq1,r +

Λ1s1

Λ2s2

ψ2,rq2,r

)
, (4.9)

which allows the estimate:

Er � 1
2

∫ (
|ψ1,rq1,r | +

Λ1s1

Λ2s2

|ψ2,rq2,r |
)

dx dy. (4.10)

Application again of the Cauchy–Schwartz–Bunyakowsky inequality together with
estimates (4.8) and (4.6), yields the following estimate for Er :

Er � ÊrΩ, Êr =
1√

Λ1Λ2(1 − s1s2)

(√
Λ2

Λ1

+ s1s2 +

√
Λ1

Λ2

+ s1s2

)
. (4.11)

4.4. Stability of vortex pairs

First, consider a pair of vortices positioned in the same (for example, upper) layer.
In this case, the general expression (3.3) for the energy of interaction between the
vortices, KS , becomes

KS = A1A2G1(r1,2), G1 =
1

4π
[γ +K0(p+r1,2) + γ −K0(p−r1,2)], (4.12)
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where γ + = α+/(α+ − α−), γ − = −α−/(α+ − α−), and γ ± > 0. We assume that

r1,2 = r
(0)
1,2 > 0 at t = 0,

From the energy conservation (4.2), it follows that, at any moment t > 0,∣∣KS − K
(0)
S

∣∣ �
∣∣Er

∣∣ +
∣∣E(0)

r

∣∣ +
∣∣A1

∣∣(|ψ1,r |r=r1
| + |ψ (0)

1,r

∣∣
r=r (0)

1

∣∣)
+

∣∣A2

∣∣(|ψ1,r |r=r2
| + |ψ (0)

1,r

∣∣
r=r (0)

2

∣∣), (4.13)

where superscript (0) denotes the quantities at t = 0. Relationships (4.12) and (4.13)
along with inequalities (4.6) and (4.11) result in the following estimate of the range
of variability of the function G1(r1,2):

∣∣G1(r1,2) − G1

(
r

(0)
1,2

)∣∣ �
2C1

|A1A2|

[
|A1| + |A2| +

Êr

C1

√
Ω

]√
Ω = R1. (4.14)

In (4.14), the regular enstrophy Ω is determined by the initial conditions, the
coefficients Êr and C1 are determined by the model parameters (see (4.7) and
(4.11)), and the amplitudes A1 and A2 are fixed. In view of (4.12), the function
G1(z) is monotonic. Therefore, for sufficiently small initial regular fields, i.e. when the
regular enstrophy Ω and the parameter R1 are small, according to (4.14) the quantity
|r1,2 − r

(0)
1,2| is also small: ∣∣r1,2 − r

(0)
1,2

∣∣ = O(R1). (4.15)

More specifically, for small R1, the range of r1,2 can be estimated as

∣∣r1,2 − r
(0)
1,2

∣∣ �
2C1∣∣G′

1

(
r

(0)
1,2

)
A1A2

∣∣
[

|A1| + |A2| +
Êr

C1

√
Ω

]√
Ω. (4.16)

When vortices positioned in different layers are considered, (3.3) yields:

KS = A1A2G2(r1,2), G2 =
1

2π(α+ − α−)

Λ1s1

Λ2s2

[K0(p−r1,2) − K0(p+r1,2)]. (4.17)

Following the line of reasoning used in the previous case, we arrive at the inequality:

∣∣G2(r1,2) − G2

(
r

(0)
1,2

)∣∣ �
2C1∣∣A1A2

∣∣
[

|A1| +
Λ1s1

Λ2s2

C2

C1

|A2| +
Êr

C1

√
Ω

]√
Ω. (4.18)

The function G2(z) is monotonic; therefore, for a sufficiently small initial regular
perturbation, the range of r1,2 is estimated as

∣∣r1,2 − r
(0)
1,2

∣∣ �
2C1∣∣G′

2

(
r

(0)
1,2

)
A1A2

∣∣
[

|A1| +
Λ1s1

Λ2s2

C2

C1

|A2| +
Êr

C1

√
Ω

]√
Ω. (4.19)

According to the estimates (4.16) and (4.19), at β = 0, any pair of point vortices
in the two-layer models (2.2) and (2.4) is nonlinearly stable relative to an arbitrary
regular perturbation with a sufficiently small enstrophy. This implies stability to any
combined initial perturbation consisting of a small regular component and a small
change in the coordinates of the vortices.

The result regarding the stability of a vortex pair can easily be extended to
the 11

2
-layer model (2.6). However, as seen from (4.8b), (4.11), this analysis fails

for the two-layer model (2.5) with a rigid-lid condition, i.e. when s1 = s2 = 1.
Mathematically, this is because we are currently unable to estimate the regular energy
Er in terms of the regular enstrophy Ω . Once this technical problem is overcome, the
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proof of stability of two-layer vortical pairs under the rigid-lid condition should be
feasible.

5. Summary
We developed a theory of quasi-geostrophic singular vortices that occupies an
intermediate position between discrete and fully continuous multilayer models. On
the f-plane, within the framework of this theory, singular vortices are the conventional
point vortices, whose potential vorticity is concentrated in a point, being proportional
to Dirac’s delta-function. In the presence of the β-effect, more general singular
vortices arise that differ from point vortices. The intrinsic vorticity of such a singular
vortex, along with the delta-function term, contains an additional term that decays
exponentially far enough from the centre of the vortex. This form of a singular vortex
on the β-plane was chosen because any β-plane modon, i.e. a distributed localized
steadily translating structure, can be represented as a continuous superposition of
singular vortices of this kind.

In addition to the flow associated with the singular vortices themselves, a regular
flow can exist. This paper focused on the interaction of singular vortices with
each other and also with the regular flow. We derived equations that describe
the cooperative evolution of the vortices and the regular field (§ 2), and obtained
the integrals of conservation of enstrophy, energy, momentum and mass in such a
vortical system (§ 3).

Analysis of the enstrophy integral at β �= 0 permitted investigation of the initial
stage of evolution of an individual singular vortex confined to one of the layers.
The regular flow generated by the vortex transports the vortex meridionally: a
cyclone starts travelling northward, and an anticyclone southward. This evolution is
similar to that which occurs with barotropic vortices. Another direct consequence
of the enstrophy conservation is related to the initial stage of evolution of a purely
baroclinic β-plane configuration comprised of a pair of singular vortices that have
the same coordinates and are of opposite signs. The initially vertical axis of such a
baroclinic vortex pair must tilt, so the cyclone shifts to the north, and the anticyclone
to the south. This shifting causes a tendency of the vortex pair to propagate eastward.

The analysis of stability of two-layer vortex pairs herein was extremely challenging.
So far, the stability of point-vortex ensembles has been examined only with respect
to perturbations in the coordinates of the vortices. The effect of a regular flow, on
a point-vortex pair strongly depends on whether or not the energy and enstrophy
of this regular flow are finite. For example, a point-vortex dipole embedded in a
rectilinear shear flow with whatever weak constant intrinsic vorticity in each layer
will always disintegrate (Gryanik 1983). In this example, the energy and enstrophy
of the background flow are infinite. We proved the nonlinear stability of an arbitrary
point-vortex pair on the f-plane with respect to any small regular perturbation
with finite energy and enstrophy. Our proof is based on the energy and enstrophy
invariants, and finiteness of the regular energy and enstrophy is critical for this
stability.
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